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Fortunately, at lower frequencies (smaller klrz), the oscillatory terms
present in the integrands are scaled accordingly and, even though the
effective integration interval increases, the number of oscillations in
the integrand does not increase appreciably (Figure 5). This fact allows
one to integrate Equations (3.8) - (3.10) numerically by employing an
efficient Gaussian quadrature integration routine for a wide range of
parameters. Later in this chapter, the efficiency and the accuracy of

the above numerical integration procedure are demonstrated and compared

to the other available techniques.

3.2 Branch-Cut Contribution

The expressions derived in the previous section are valid only when
no singularities are intercepted during the steepest descent path deformation.

In order to locate the poles and the branch points, one must consider the

following physical constraints:

a) 0 5'62 < m/2, since Equations (3.8) - (3.10) are valid only for :
observation points above ground; ﬁ

b) Re(k) > 1 and Im(k) < 0, since x = Eg -jo/(wEO): E

c) - % < Re(§) < m on the SDP (see Figure 3). j
Furthermore, since cos (§) is a single-valued function, condition (2.50a) E
does not have to be satisfied during the path deformation. Condition ?

(2.50b) is used to define an upper- and a lower-Riemann sheet in the

t-plane in which this condition is satisfied in the upper and violated in !

the lower sheet. t

Equations (3.8) - (3.10) have the same branch points satisfving

2
< - sin” Eb *=J . (3.12) |
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If one considers the physical constraints discussed earlier, only the

following two branch point solutions are of importance (see Figure 0):

§ = ™2: 4 Ln (VK + vk = 1) . (3.13)
The corresponding branch cuts of Equation (3.13) which satisfy the relation
/ 2
Im (v = sin” ) = 0 s (3.14)

as depicted in Figure 6, are the boundaries through which the integration
path will travel to and from the two Riemann sheets detined earlier.

Since the steepest descent path defined in Equation (3.3) is independent

of K, one can easily demonstrate that for 0 < 3, < 90% only the branch
point with the upper sign can be captured by the SDP detormation (Figure 7).
Therefore, one can allow the SDP to enter the lower sheet only when the
lower branch cut, corresponding to the lower sign of Equation (3.13), is
intercepted, since the path will alwavs intercept the lower cut at an
additional point forcing it to return to the upper Riemann sheet (see
Figure 7). A branch-cut integration, however, is pertormed around the upper
branch cut whenever it is intercepted in order to remain the proper sheet.
The branch cut in the upper-half plane as a function of a positive real

3

parameter 3 can be expressed as

/ 8 / )
ibc = 7/2+ 3§ Ln (Vk =37+ =-1-2387D 5 (3.15a)

or, equivalently,

.J

sin & = yx - 3 (3.15b)

be

y -

cos 5bc = -] v¢=-1-3 (3.15¢)

Bv applving the change of variable in Equation (3.15) to the Sommerteld
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integrals expressed in (2.47) - (2.49) and integrating around the branch

cut, the following contributions are obtained:

.2 >
: O 3 (2 :
i = k.k(2m3) { 3 5 <8
o'vizl, | g ks S S e e B B L B be!
C O [ COs \.bc ~
* ex -jk.z, cos & ) dB "
exp ( jkl 9 C0s & ) d (3.16)
gD o e LB R R Y e o £
0" hlx| no*1 <" | T Mg s 30 B ) exp {m)K By EON See
be :
0
(3:17)
| o J'D‘l 4.‘
I <, (2m) cos 3 =
oqm:ib‘ Tno¥; ! N R s e
[ 4 0 N COS ».bc ~
3 E (2) i B S 3
. s g cos & ¢.D. S g X -jk,z, cos I, )dRB,
sin b Cos bCHl (kl‘: sin " exp ( jkl > 0s be d

(3.18)

where 3 = 3  is the crossing point of the branch cut and the SDP in the

1
f-place. By expanding Equation (3.2) and by emploving the (3.15)
relations, the following conditions are obtained tor 51
sin 3, Re(A) + cos 3, Im(B) = 1 (3. 19a)
. b 1/2 .
[- sin 8, Im(A) + cos 2, Re(B)] -t (3.19b)
where the complex numbers A and B are defined as
/ i
A=< - 3 3 Re(A) > 0 = Im(A) <~ Q (3.20a)
P —
B=yv =-1- SI $ Re(B) > 0 % m(B) <« 0 t (3.20b)

In (3.19), t = t defines the point at which the SDP, corrvesponding to
the observation angle o, intercepts the branch cut of Equation (3.15) at

3= 3 . After some algebraic manipulations, Equation (3.19a) can be




e
further simplified to
- ) ) -l1/2 -
B, = sin " ([Re’(A) + 2(®)171?) - can! (2B (3.21)
& Re(.\)
from which gmin' the observation angle at which SDP will pass through the
branch point, can be computed bv setting Sl = 0. Since Gmin is only a

function of <, Figure 8 is constructed to show its variations as a function
of the ground parameters and the frequency. Therefore, whenever the
observation angle &, satisfies the condition

8, > 6 s (3.22)

the branch-cut contributions in (3.16) - (3.18) are to be added to their
respective SDP vector potential formulations expressed in (3.38) - (3.10).
It should be pointed out that once the condition (3.22) is met, the
branch—cut integration limit 51 can be computed numerically by iterating on
Equation (3.21). Also, because of the branch-—cut interception, the SDP
integrand will be discontinuous at point t = tl‘ which is readilv computed
by substituting the value of Sl into (3.19b).
Fortunately, in manv cases, the branch-=cut contributions are several
orders of magnitude smaller than the SOP integral value and can be
ignored [10]. Therefore, it is necessarv o introduce a condition for
which one can ignore the branch-cut integration and thereby compute the
vector potentials more efficientlv. This task can be accomplished by

A

initially considering the exp (-k,r.t”) term present in all three vector

1

potential integrands shown in (3.8) - (3.10). 1If no poles are present
on or near the contour, a finite integration in the interval

9 1/2
(—)
p— &' r v

. -

(3.23)

P
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will result in an error on the order of 0.01% as compared to the full
infinite integration. By examining the branch-cut loci (Figure 6) and
the SDP behavior (Figure 3) in the £-plane, an assumption can be made
which states that if the branch cut intercepts the SDP inside the finite
integration interval defined in (3.23), then the branch-cut contribution
is not negligible. Or equivalently, the branch-cut contribution requires
an additional condition, namely,

-1/2

£ <€ = 3(k1r2) (3.24)

1 — max
where t = tl is the SDP and branch-cut intercept defined earlier.
In summary, condition (3.22) signals the capture of the branch
point during the path deformation. If captured, condition (3.24) is
used to decide whether the branch-cut integration can be ignored or not.
Table 3.1 is constructed to verify the validity of the assumptions which
led to Equation (3.24) by comparing the branch~cut values with the SDP

integration results for a wide range of parameters.

3.3 Pole Contribution

Unlike the branch points, which exist in all three of the correction
vector potential components, the poles only exist in the vertical

components of the vector potentials, viz., OH and Onvlz’ and satisfy

hlz

the relation
< E. + vk - in2 £, =0 (3.25)
cos &p s &p ’ v

Again, by considering the physical constraints discussed at the start of
the previous section, only the following two poles need to be considered
(see Figure 9):

Ep = m/2 ¢ j [Ln (/ = 3) = Ln (V/k + 1)]
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Fortunately, one can verify that for 0 < o/f <« =, 0 < 0, < 90°, and

by considering the correct Riemann sheets (see Figure 7), the poles in

Equation (3.26) will not be captured by the SDP and the residue contribution

is not needed. However, under extreme circumstances, i.e., 0, ~ 90° and

small € , a pole can come close to the SDP. In this case, a higher-order
Y

Gaussian quadrature integration routine is required and possibly the

effective integration interval in (3.23) should be expanded.

3.4 Asymptotic Approximation

he steepest descent tormulation of the previous sections can be used
to derive an asymptotic expansion for the Sommerfeld integrals in terms

of inverse powers of k. r,. In Appendix II, a general discussion is

1
presented for asvmptotically evaluating the integral in (3.1), and as an

example, the tirst two asymptotic expansion terms for the vector potential
axpressions in (2.47) - (2.49) are derived. The first terms, better known

as the Fresnel's reflection coefficient method (RCM) approximations, are

shown to be:

28 cos i“ )
f = [ P s et et | B -ik.r. )/ 4mre, + O(k,r.) ©
o'viz * Yo e —— JegResranE, %2
K cos 8, + vk = sin” 0,
(3.27)
cos B, <9
omix = Iho T exp (=]k,ry)/4mr, + Ok, r,) &
3 s 2 2 2
cos 9, + vk = sin” 9
- = (3.298)
p ]
Cos “ - VK = sin” “
1 = 2 cos O . A os o SRR (SRR SN -
0 hl.! lh\) COs o sin N CoOs : s
K cos B, + vk - sin” 0,
‘\
*exp \-iklr,\ﬂéwr\ + O(er,) i ' (3.29)
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The above RCM expressions have been extensively usea for high-frequency
antenna applications (klr2 large) with surprisingly accurate results,
e.g., [13], [14]. This success has been mainly due to the fact that
for observation points away from the interfacg, the remaining vector
potential components preseﬁt in (2.20) and (2.30) tend to dominate over
the RCM components thereby reducing the net error in the total vector
potential values computed. Therefore, little is gained by adding the
complicated second terms in the asymptotic expansion of the vector
potentials, derived in Appendix II, since the accuracy of the total
vector potential will not be affected appreciably.

An error of 5% or less can be expected in‘the RCM vector potential
components shown in (3.27) - (3.29) when

k.r. > 10 (3.:30)

and as long as the branch-cut conditions given in the previous section

are not violated (see Tables 3.2 - 3.4). These conditions are more

general than the one proposed by Sarkar [ 7] in defining the useful

range of the RCM expressions. The second terms in the asymptotic expansion,
as demonstrated in Tables 3.2 - 3.4, only offer a slight improvement in

the accuracy of the dThlx RCM expression in the region where the branch-
cut contribution is negligible. The remaining vector potential components,
however, do not benefit from the 2nd term in the asymptotic expansions,
possibly because they contain a pole in their Sommerfeld integrals.

Figures 10 - 12 also compare the RCM, two-term asymptotic expansion and

the exact integration values of the correction vector potential components

for a typical half~space as a function of klrﬂ. Finally, in order to

e ———— R A

R e o = v o e

e
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Arbitrary Wire Antenna

Medium I (air)
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Figure 18. The geometry of an arbitrarily shaped wire antenna located

over a lossy half-space.
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N >eXxc ,> ~ > ->~>->'~.—>->' ~>—>+,*.—>->,_],
I(r) - E (ra) + I(r) J[&v(ra,ra)z I(r)) + Gh(ra,ra)x I(ra)-.ldra

antenna

AMEDHIG) (5.1)
a a

A >
where I(ra) is a unit vector along the antenna direction and the kernels
~>->->' ~>+—>' I .

G (r_,r') and G, (r_,r') are the E-fields induced at point r_due to a one-
v a a h' a’"a a

-
ampere electric current element located at r; and oriented in the z- and
the x-directions, respectively. The matrix Equation (2.9), which formulates
the electric-field components in terms of the vector potentials, is used
to write:

E = anx * anz , (5.2)

> >
where the vector operators DX and DZ are defined as:

f)’-hrk?'+——a-E +“321+"32} (5.3a)
x - M Z Yioxay) * %|5xoz o)
X ik ’
2 2 2
x _ «f 3 - (o N
P x[axaz] +YEa—y§] i Z[kl +3—'] - pratl

By using the general formula in (5.2), one can directly write the two kernels,

e o = -~ o -
Gv and Gh’ in terms of the incident, perfect reflection, and the correction

vector potential components (see Equations (2.20), (2.30 . and (2.32)), namelv,
CE =BT . +&FET .Y+ B E Y (5.4)
v a’ v a'a v a' & 0°v' a’ta’’ o8
where
SFLED = Gue) B gE - T (5.5a)
v a’a 0 2 a a £
CE(r..t") = (jue) 1B g(f. - £' - 2h3) (5. 5b)
- a’a Jweq 28'%a a ¥ s
_: - gl 4 o 'v Al ¢
= 14 - 2hz )
Obv(ra.ra) Dz ohetet®y ~ ¥, hz) . (5S¢
I =]




and
oy :-si-» -+, >r > -+, ->->-»'
Eh(ra,r.) Gh(ra,ra) + Gh(ra,ra) + 0Gh(ra.ra) 5 (5.6)
where
Eé(?a.?‘;) = (Jweo)- D g(r - r!') (5.7a)
GrELED = (jmeo)'lﬁxg(?a - T - 2hi) (5.7b)

-> -‘l - -> ol -')" o - -> > g ->' _ 9 -~ =
0Eh(ra,ra) [%x 0thx(ra t 2hz) + Dz Onhlz(ra ) -hz{] o (S.7c)

1
Note that in the above equations, h = r; cos (ea) is the height of the current
source above the half-plane interface and g is the free-space Green's function
defined in (4.5b).
The correction vector potential formulation of Chapter 4, namely,

Equations (4.11), (4.15), and (4.16), along with the expansions presented
in Appendix III, enable one to compute the scattered components of the two

+>r > =r > . .
kernels, viz., G ,.G ,G_, and .G , without difficulty. However, because of

v’0 v’ h 0"h

the singular nature of g, the free-space soiution of the kernels, Gi and E&,
should not be computed directly. Instead, as has been successfully reported
[11], (14], [18], and [19], the thin-wire approximation is used to shirt
the observation point t5 to the antenna surface, and in order to further
smooth out the singularities, the finite difference scheme is emploved to

perform the D‘ and D_ operations defined in (5.3).

5.2 Method of Moments

As developed by Harrington [17], the method of moments is a convenient
approximation for transforming the antenna integral equation into a numericallvy

manageable matrix form. In this work, pulse-basis and delta-matching functions

~—
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are chosen since they eliminate the need for integrating the kernels Ev
and Eh' The number of unknown patches on the antenna N should be large
enough so that the patch length A is at most 1/6 of the wavelength. The
approximated current along the antenna is therefore represented as:
A N o
I = ngllnln > (5.8)

for which In is an unknown constant value over the nth patch and zero
outside of it, also in is a known unit vector tangent tc the antenna at

the center of the nth patch (see Figure 18). Substituting (5.8) into (5.1)
and letting subscripts n = 1,2,3,+++ denote "evaluation at the center

of the n‘:h patch," and letting [f] and [EPXC] be column vectors containing
the current and the tangential excitation field values at successive

patches, one finally arrives at

[EC] = -12"™)(T) + (A)T) (5.9
where [A] is a diagonal matrix with elements Al.A,,o--.xn; and (Zimp] {s
an n xn square matrix with its ith row and jCh column element defined as:
j_mp A & A > <3 ap > ~ AL - -~ >
. A L X 5 o] L (5.10)
245 u(‘rai) [ I( aj)cv(rai,raj) + x I(raj)(h“al raJ)] (5.10

Note that i and j also refer to patch numbers, and j is the patch length.
The matrix Equation (5.9) can be solved for the unknown currents lf],und bv
replacing the excitation E-field in terms of the excitation voltage [V], one

arrives at

(1] = (¥*"%(7) (5.11a)
") = 2”122y « a7t (5.11)
ant

] is constructed for a given structure, the antenna currents can

Once (Y

=

e

Ankit

I by
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be directly computed for a given voltage source excitation. As was discussed
in the previous section, the thin-wire approximation and the finite-difference
scheme are employed for evaluating the free-space solution components of

the kernels, viz., E: and 5;. A power series, derived by Harrington [20],

is used for the thin-wire approximation computations, and based on the

conclusions made in [11], (l4], (18], and {19], the finite difference
parameter § is chosen to be equal to A/2, e.g.,
) e = ’

2 E(xy * 8) + Elxy ~ 6) = 2£(xy)

£
a5 B) 5
£

Ix 8§

§ = 4/2 . (5.12)

13

The free-space solution obtained by using the above approach has been thor-
oughly tested and, as an example, the generated impedance curves shown in

Figures 19 and 20 agree well with the ones reported by Jordan et al. [21].

5.3 Far-Field Radiation Pattern

The RCM expressions, shown in Equations (3.27) - (3.29), are the logical :
choices for representing the correction vector potential components in the 3
far-field region (klr >> 10). Working in the spherical coordinate system E
(r,9,9), and neglecting all terms containing r—:, r_j. *++, One can easily L
show .

I

w.iz-lne , (5.13) :

5 e

where T is the total vector potential. The total electric field E, {rom ;
Equation (2.8), can therefore be shown to have no r-component, namelvy, L

T 2 ) & .
E(r,8,¢) = (k™ + )T = k“[(cos 8 cos $ T = sin 3 1 )3 = sin ¢ T ]
X 2 X

(5.1%)

As expected, the above far-field expression represents two plane waves
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(polarized in the d- and the = directions) propagating away from the (x,v,z)
origin defined in Figure 18. In summary, the far-electric-field radiation
pattern due to a current element with no §—componen: can be readily computed
by initially evaluating the total vector potential components via the RCM
approximation and then using Equation (5.14) to obtain the E-tield values
at the desired observation points.

The far-field pattern for a given antenna structure is simply obtained

bv applving the superposition theorem to the individual radiation patterans

of the antenna current segments defined in the method of moments approximation. b
Radiation pattern examples are included for the various antenna structures 3
: : ' t

analvzed in the following sections. {
5.+ Horizontal Antenna over Lossv Half-Space :
The general developments of Sections 5.1 - 5.3 are applied to the ¥

i

horizontal antenna shown in Figure 2l1. Fortunately, because of the svmmetries ¥
5

|

’ L img . it
present in this geometrv, the [Z p] matrix in Equation (5.9) takes the

following form (Toeplitz matrix):

TN,

a a, a . . . a

‘ 1 2 3 a |

a a a . . . a
Z 1 2 o-1|

la a a . . . 1

; 3 2 L n=-21

[:imp] = i. . . . . . . { . (5.15) 13
|

- . . . . . . ] E

| &

| | b
a a a . . . a o
n =1 Tn=2 L !

-—

Therefore, one needs to compute only one row of this matrix and use the afove-

mentioned svmmetry to complete it. The main program, HORIZ (see Appendix 1\,
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Figure 21. Center-fed horizontal dipole over a lossy halt-space.
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is developed to analyze the horizontal antenna of Figure 21. Using this
program, Figures 22 and 23 are generated to show the impedance variations
of a 2L = 10 meters center-fed horizontal antenna located h = 3 meters
above various lossy grounds. Radiation pattern of this antenna at 15 MHz
is also shown in Figures 24 and 25.

5.5 Vertical Antenna over Lossy Half~Space

The vertical dipole shown in Figure 26 is the next geometry considered.
. = . imp
Unfortunately, as was the case for the horizontal antenna, the total [Z ]
matrix is not in a Toeplitz form. However, main program VERT (in Appendix IV)
is designed to take maximum advantage of the available symmetry. As an
example, Figure 27 is included to show the radiation pattern of a 2L = 10
meters, h = 8 meters, center-fed vertical dipole at resonance (f = 15 MHz)

located over various lossy grounds.

5.0 Inverted Vee-Dipole

As a complicated example, the inverted Vee-dipole of Figure 218 is
considered. Again, as in the two previous sections, symmetry is used in the
main program VEEDIP (Appendix IV) in constructing the [:imp] matrix. The
program is tested for an inverted Vee-dipole structure having L = 7.5 meters,
h = 10 meters, and ¥ = 900; Figures 29 and 30 demonstrate the radiation
pattern of this structure at 10 MHz and for various lossv grounds.

In all three of these examples, care has been taken not to violate the
conditions /x| > 10 and Equation (4.26) to ensure the accuracy of the results.
P

Lim foi & :
Also, since the (Z matrix for these examples turns out to be svmmetric,

a special inversion routine (XINVZ in Appendix IV) is emploved to save an

appreciable amount of computer time.
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Figure 6. Center-fed vertical dipole over a lossv halt-space.
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Figure 28. Center-fed inverted Vee-dipole over a lossv halt-space.
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o. CONCLUSIONS

Based on the steepest descent path (SDP) integration technique, an
efficient numerical integration procedure is developed in Chapter 3 for
computing the Sommerfeld infinite integrals present in the vector potential
expressions of a current element radiating over a lossy half-space. Even
though this procedure is about an order of magnitude faster than the latest
reported Sommerfeld integration techniques, the computation time for a tvpical
antenna problem can still become prohibitive. The reflection coefficient
method (RCM) approximations, which are simply the first term in the asvmptotic
expansion of the Sommerfeld integrals, offer a simple closed-form solution
valid only at che high end of the frequency spectrum and which cannot be
emploved in many practical situations. Also, the addition of the second term
in the aforementioned asvmptotic expansion to the RCM approximations is ruled
out, since the resulting vertical vector potential components diverge trom
their respective exact integration values.

Chapter 4 presents a novel approach in which the transtorm domain
representation of the vector potentials is approximated such that the
resulting space-domain expressions do not require anv kind of infinite
integration. This approach has the merit of being computationally over an
order of magnitude faster than the SDP technique of Chapter 3, while being
accurate over a wide range of parameters of practical interest and, in
addition, offers a simple and numerically manageable procedure for obtaining
the near E- and H-field components.

The general computer program, listed in Appendix IV, is developed by

emploving the approximate formulas of Chapter 4 and is used to solve several
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antenna geometries. With minor modifications, this program can be adapted

to analyze most three-dimensional thin-wire antenna structures over a lossy

half-space.

i
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APPENDIX I

EVALUATION OF Onhlx 0 hlZ AND Onvlz AT 92 =0

at 6, = 0. In their present forms, these integrals are not defined at

-

where o, = rz sin ¢,. The Hankel function in (I.1) is not bounded at

0

\, hence, their contributions to the integral (I.l) are zero.

Substituting (I.2) into (I.1), one finally arrives at

I h?
1 <A 2215 (e, sin 3, )
0 vl ™ 0
viz %WJ i V&) G / Bl 0 < -

- <yk1 - X5+ vky = A

-jz,vkl-\
v Tn(e,r) ¢

Note that both J. and the summation terms in (I.2) are even functions of

81

In this appendix, the behavior of Equations (2.47) - (2.49) is studied

Py = 0, although it is clear that their equivalent forms in (2.42) - (2.44)
are bounded. Equation (2.47) can be expressed here for convenience as
I -
_jz v -
5 2
f, ==39 K LT P T
0"vlz 4mj S = = o 8, 2
e TR+ aZ - 2

.
62 = 0. To circumvent this difficulty, one replaces Hé”) with its expansion
from [22
YPAA S @ 0, X -m
( ) = o 1 2 2 S 1)
(P, 1) = TP A) = =L —5— J (0,0) + 2 1
m=1 (m')

(L.2)
where Y is Euler's constant and ®(m) represents the harmonic series,
i.e.,

d(m) =1 +1/2+1/3+ ... +1/m = (T::3)
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which is obviously bounded at 62 = 0. Introducing the change of variable

N = k1 sin £ into (I.4) and setting 62 = 0, one finds

Ik E N ;
=0l K sin £ cos § =2j . =k v, cosg i
Onvlz 4] J - - Lo(k;r, sin E) e =12 d€
FKkecos & +vk = sin™ &
- e (1.5)

where path ' is shown in Figure 2. In a similar fashion, one may obtain

equivalent expressions for the remaining vector potential components at

62 = 0, namely,

I k : s -jk,r, cos§

vl j sin € cos £ ;] Ln(klr7 stn £) o 100 3t

0'hlx ~ 4§ P
T cos £ + vk = sin” §

(1.6)

(1.7)
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APPENDIX II

ASYMPTOTIC EVALUATION

In this appendix, a general formulation is developed for a higher-order

asymptotic evaluation of an integral with the following format:

e -jkr cos(&-8)
B J P(E) e des (II.1)
r

where it is assumed that kr is a large parameter, -m/2 < 6 < 7/2, P(§)

is a slowly varying function and path I' is shown in Fig. 2. For large
values of kr, one is usually interested in determining the asymptotic
expression of (II.1l); this is done by employing the method of the steepest-
descent path integration. At the saddle point £ = 8, one can deform the
integration path I' to the steepest descent path (SDP) defined by

Re[cos (£ - 8)] = 1. Assuming that in this deformation no poles or branch

points are encountered, one may express (II.1l) as

1
4mj

-jkr cos(E-8) aE . (11.2)

[ P(E) e
SDP

Since on the SDP the relation Ref[cos (£ - 8)] = 1 holds, one can

introduce the change of variable

cos (£-8,)=1-jt° (11.3)
or equivalently,

t =2 e-j“/4 sin éL{%Ji . (II.4)
in which t is a real variable taking the domain [-®,®]. Substituting (II.4)

into (II.2), one arrives at

——
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-jkr-jm/4 Sy
u=t— F at) e F de (I1.5)
2v2 e
wiere
;’ - A
Gle) = P(E) see =—a— (1I.6a)
in which £ is replaced with
2 o <
£=:E+jLn(t + 3+ |tlve +2jﬂ+9 2 e 20 (II.6b)

and Ln is interpreted as being its principal value. The complete asvmptotic
expansion procedure [23] is now used for the asvmptotic evaluation of (II.5).

In this procedure, one first expands Q(t) in a Tavlor series

© _(n)
N Q (0  .n 5
Q(t) Z T+ D¢ ik L
n=0
Gt 9n
where Q - 0) = T Q(t)l and I is the Gamma function. Then (II.7) is
at t=0

substituted into (II.5) to finally result in

-jkr=jm/4 «© _-2n [
=2 ) - (ko) B A () S (I1.8)
n=0 )

2v2m

In constructing the preceding equation, the following identity was used,

Vizes

e 2
= 9 (kr) (14n)/2 T + n)/2) for n even
| e = gt = . (II.9)
- 0 for n odd

(2n),

IThe task is now to determine Q s in terms of P. This is achieved by

differentiating (II.6a) and arriving at




